Abstract

The experimental exfoliation of layered, ternary transition-metal carbide and nitride compounds, known as MAX phases, into two-dimensional (2D) nanosheets, is a great development in the synthesis of novel low-dimensional inorganic systems. Among the MAX phases, Mo-containing ones might be considered as the source for obtaining Mo2C nanosheets with potentially unique properties, if they could be exfoliated. Here, by using a set of first-principles calculations, we discuss the effect of the interlayer ‘A’ element on the exfoliation of Mo2AC (A = Al, Si, P, Ga, Ge, As or In) MAX phases into the 2D Mo2C nanosheets. Based on the calculated exfoliation energies and the elastic constants, we propose that Mo2InC with the lowest exfoliation energy and the highest elastic constant anisotropy between C11 and C33 might be a suitable compound for exfoliation into 2D Mo2C nanosheets.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call