Abstract

The essential characteristic of the self-propelled jumping droplet is the jumping velocity, which determines its application value in heat transfer enhancement, antifrosting, self-cleaning, and so on. The jumping velocity is directly related to the energy conversion efficiency (i.e., the ratio of jumping kinetic energy surface energy released by coalescence to surface energy released by coalescence) and it is affected by the initial state of droplets but there is no unified theory to describe the relationship between the initial state of droplets and the energy conversion efficiency. In this paper, the projection of the initial chemical potential and the final chemical potential difference of droplets in the direction of jumping is defined as jumping potential by theoretical analysis of the chemical potential evolution. The effects of droplet number, distribution, and radius ratio on energy conversion efficiency can be synthetically characterized by jumping potential. The larger the jumping potential is, the higher the energy conversion efficiency is. Finally, the rationality and universality of the jumping potential are verified by numerical simulations and comparison with previous studies. The jumping potential can explain phenomena that cannot be explained in previous studies and can provide a synthesis critical value of droplet jumping.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.