Abstract

The effects of initial microstructure and thermal cycle on recrystallization, austenite formation, and their interaction were studied for intercritical annealing of a low-carbon steel that is suitable for industrial production of DP600 grade. The initial microstructures included 50 pct cold-rolled ferrite–pearlite, ferrite–bainite–pearlite and martensite. The latter two materials recrystallized at similar rates, while slower recrystallization was observed for ferrite–pearlite. If heating to an intercritical temperature was sufficiently slow, then recrystallization was completed before austenite formation, otherwise austenite formed in a partially recrystallized microstructure. The same trends as for recrystallization were found for the effect of initial microstructure on kinetics of austenite formation. The recrystallization–austenite formation interaction accelerated austenization in all the three starting microstructures by providing additional nucleation sites and enhancing growth rates, and drastically altered morphology and distribution of austenite. In particular, for ferrite–bainite–pearlite and martensite, the recrystallization–austenite formation interaction resulted in substantial microstructural refinement. Recrystallization and austenite formation from a fully recrystallized state were successfully modeled using the Johnson–Mehl–Avrami–Kolmogorov approach.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call