Abstract

A numerical investigation is carried out to study an unsteady laminar natural convection heat transfer caused by an array of isothermal oscillating circular cylinders. Under oscillating conditions, flow and thermal fields are categorized into a class of moving boundary problems. In this study, the moving interfaces between the fluid and cylinders have been considered. The numerical model used in the present paper, is based on a 2D Navier–Stokes momentum and energy equations for an incompressible flow solver on an unstructured grid. Discretization of the governing equations including continuity, momentum and energy equations is achieved through a finite element scheme based on characteristic based split algorithm using the arbitrary Lagrangian–Eulerian approach to satisfy boundary movement. Besides a dual time stepping method is employed to capture unsteady flow and thermal characteristics. The working fluid is designated a Prandtl number of 0.71(air) and assumed to be incompressible with constant physical properties. The radiation, viscous dissipation and pressure work are also assumed to be negligible throughout this investigation. Fluid flow and heat transfer characteristics are examined in the domain of the Rayleigh number, cylinders spacing, amplitude, and frequency of oscillations such that: 103 ≤ Ra ≤ 105, 2 ≤ s/d ≤ 4, 0.5 ≤ l ≤ 2, and 0.1 ≤ f ≤ 0.4. The obtained results reveal that increment of Rayleigh number and cylinders’ spacing augment the average Nusselt of each cylinder as well as higher oscillation amplitude and frequency. Moreover, it was found that horizontal vibration makes vortices appear in the left and right area of the cylinders. These vortices reduce heat transfer from two upper cylinders.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call