Abstract

Humanoid robots are widely used in brain computer interface (BCI). Using a humanoid robot stimulus could increase the amplitude of event-related potentials (ERPs), which improves BCI performance. Since a humanoid robot contains many human elements, the element that increases the ERPs amplitude is unclear, and how to test the effect of it on the brain is a problem. This study used different graphic structures of an NAO humanoid robot to design three types of robot stimuli: a global robot, its local information, and its topological action. Ten subjects first conducted an odd-ball-based BCI (OD-BCI) by applying these stimuli. Then, they accomplished a delayed matching-to-sample task (DMST) that was used to specialize the encoding and retrieval phases of the OD-BCI task. In the retrieval phase of the DMST, the global stimulus induces the largest N200 and P300 potentials with the shortest latencies in the frontal, central, and occipital areas. This finding is in accordance with the P300 and classification performance of the OD-BCI task. When induced by the local stimulus, the subjects responded faster and more accurately in the retrieval phase of the DMST than in the other two conditions, indicating that the local stimulus improved the subject's responses. These results indicate that the OD-BCI task causes subject's retrieval work when the subject recognizes and outputs the stimulus. The global stimulus that contains topological and local elements could make brain react faster and induce larger ERPs, this finding could be used during the development of visual stimuli to improve BCI performance.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call