Abstract

Maize grains are composed of the pericarp, endosperm, and germ. Consequently, any treatment, such as electromagnetic fields (EMF) must alter these components, which in turn alters the physicochemical properties of the grain. Since starch is a major component of corn grain, and given the great industrial importance of starch, this study investigates how EMF affects the physicochemical properties of starch. Mother seed were exposed to three different intensities 23, 70, and 118 μT for 15 days. Except for a slight porosity on the surface of the starch of the grains of plants exposed to higher EMF, the starch showed no morphological differences between the different treatments and the control (according to scanning electron microscopy). The X-ray patterns showed that the orthorhombic structure was kept constant, unaffected by the intensity of EMF. However, the pasting profile of starch was affected, and a decrease in the peak viscosity was obtained when the intensity of EMF increased. In contrast to the control plants, FTIR shows characteristic bands which can be attributed to the stretching of the CO bonds at wave number 1.711 cm−1. EMF can be considered a physical modification of starch.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.