Abstract

Soil preparation tools are subject to severe abrasion. The wear resistance of various industrial components can be improved using the hardfacing technique. The improvement in hardfacing wear resistance depends on the microstructure, i.e., the chemical composition of the alloys, the method of overlay, and the parameters of the selected process. The Plasma Transferred Arc with Powder (PTA-P) welding process is interesting as a hardfacing technique since it promotes very low dilution of the substrate in the coating. In this article, the PTA-P welding process was used for the deposition of Fe-Cr-C-based hard coatings with the addition of vanadium onto cheap and relatively soft low-carbon steel substrates. Rubber-wheel abrasion tests were performed to compare the abrasion resistance between commercial anti-wear steel and weld-deposited Fe-Cr-C-V hard coatings. In addition, the microstructure, dilution, and wear mechanisms were investigated. The dilution of the coatings affected the microstructure, in particular, the free mean path of the vanadium carbides, but it only affected abrasion resistance when the wear mechanism involved rolling abrasion. The deposited coatings proved to be at least three times stronger than a commercial abrasion-resistant steel due to the distribution and morphology of the vanadium carbides formed in the coatings.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.