Abstract

The inlet’s geometry is always the core factor that directly affects hydrodynamics and separation efficiency of the cyclone separation types. The Gas-Liquid Cylindrical Cyclone (GLCC) separators have been developed in recent years to separate into single phases of multiphase mixtures in the oil and gas industry. It is used to substitute for the traditional separator that is used over 100 years. However, the action of phases in the instrument is very fast, complicated and unsteady which may cause the difficulty to enhance the performance of the separation phases. Besides, the effect of inlet’s structures over its hydrodynamics and performance is not fully understood. The target of this study is to use experimental modeling for two phases flow (gas-water) to evaluate the effect of inlet geometrical modifications in the reduction of liquid carry-over (LCO). Four different inlet configurations are constructed, namely: One circular inlet, two symmetric circular inlets, one square inlet and two symmetric square inlets with the gradually reduced nozzle. From the results presented in this work, we propose the use of two symmetric inlets to enhance the separator efficiency because of their effects.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call