Abstract
Bias stress degradation in conjugated polymer field-effect transistors is a fundamental problem in these disordered materials and can be traced back to interactions of the material with environmental species,1,2,3 as well as fabrication-induced defects.4,5 However, the effect of the end groups of the polymer gate dielectric and the associated dipole-induced disorder on bias stress stability has not been studied so far in high-performing n-type materials, such as N2200.6,7 In this work, the performance metrics of N2200 transistors are examined with respect to dielectrics with different end groups (Cytop-M and Cytop-S8). We hypothesize that the polar end groups would lead to increased dipole-induced disorder, and worse performance.1,9,10 The long-time annealing scheme at lower temperatures used in the paper is assumed to lead to better crystallization by allowing the crystalline domains to reorganize in the presence of the solvent.11 It is hypothesized that the higher crystallinity could narrow down the range at which energy carriers are induced and thus decrease the gate dependence of the mobility. The results show that the dielectric end groups do not influence the bias stress stability of N2200 transistors. However, long annealing times result in a dramatic improvement in bias stress stability, with the most stable devices having a mobility that is only weakly dependent on or independent of gate voltage.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.