Abstract

Light-emitting electrochemical cells (LEECs) are a promising low-cost option for display and solid-state lighting. In these devices, the interplay of mobile ions, electrons, and holes makes for rich physics that can be leveraged for high performance. One example of this interplay is in the formation and radiative decay of excitons-bound electron and hole pairs. Considerations from exciton binding and Langevin recombination suggest that a low dielectric constant (ϵ) would enhance emission. However, emission is also enhanced by the product of the bulk hole and electron concentrations, which in LEECs are enhanced by the motion of small mobile ions yielding high dielectric constants. These competing effects make it difficult to predict whether active layers with low or high dielectric constants will optimize device performance. Here, the effect of varying the dielectric constant on the performance of LEEC devices from ionic transition-metal complexes was studied by systematically exchanging the negative counterions paired with an iridium complex emitter. Electrochemical impedance spectroscopy, constant voltage and constant current device studies, and drift-diffusion simulations were performed. The results clarify the competing effects of Langevin bimolecular recombination and ion-assisted injection processes occurring in LEECs.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.