Abstract

The new necklace-type molecules were formed by [8–13]CPP and carborane, which further manipulated the size of the macroring, revealing the effect of size on its luminescence behavior. In this work, the effects of ring size on the absorption spectrum, electron excitation and nonlinear optical properties of the compounds were investigated in detail, aiming to reveal an effective way to improve the optical properties of these necklace-type compounds. The absorption spectra of the compounds showed that the size of the CPP ring had little effect on the spectral shape and position, but the electron transition information showed that there were the significant charge transfer within the CPP ring and a gradual enhancement of interfragment charge transfer from the CPP ring to carborane. The increasing order of polarizability, first and second hyperpolarizability values of these compounds with the increase of CPP size indicated that increasing the size of the CPP ring was an effective way to increase the nonlinear optical properties of necklace-type molecules. Among the frequency dependent hyperpolarizability values, the γ(-ω;ω,0,0) value increased by a factor of 4 from complex 1 to 6 with the increase of CPP ring size, which indicated that increasing the size of the CPP ring was an effective way to increase the optical Kerr effect of necklace-type molecules. Therefore, these the new necklace-type nolecules formed by carborane and [n]Cycloparaphenylenes would be excellent nonlinear optical materials in the field of the all-optical switch.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.