Abstract

Increased levels of nutrients and algae can cause drinking water problems in communities. Harmful algal blooms affect humans, fish, marine mammals, birds, and other animals. In the present study, we investigated the use of a combined system [Hydrodynamic Cavitation, Ozone (O3), and Hydrogen Peroxide (H2O2)] on the removal of Chlorophyll a and Organic substances in the raw water was investigated. The Effect of different operating conditions such as pH, cavitation time, pressure, distance, flow rate, ozone dose, and hydrogen peroxide concentration was studied. Utilizing the Taguchi design method, experiments were planned and optimized. The combined system treatment yielded a maximum reduction in Chlorophyll a and Total Organic Carbon (TOC) at an optimum condition of pH 5, cavitation pressure 5 bar, flow rate of 1 m3/h, a distance of 25 cm from the orifice plate, O3 3 g/h and 2 g/l of H2O2 concentrations. The most efficient factor in the degradation of TOC and Chlorophyll a, was cavitation pressure based on the percentage contributions of each parameter (38.64 percent and 35.05 percent, respectively). H2O2 was found to have the most negligible impact on degradation efficiency (4.24 percent and 4.11 percent, respectively).

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call