Abstract
Highly ordered MCM-41 mesoporous molecular sieves in which silicon was isomorphously substituted with 0.5–4 wt.% cobalt were synthesized using an alkyl template with a 16 carbon atoms alkyl chain length. These materials were used as catalysts for the synthesis of uniform diameter single wall carbon nanotubes (SWNT) by CO disproportionation (Boudouard reaction). The SWNT synthesis conditions were identical for all Co-MCM-41 samples, and consisted of pre-reduction of the Co-MCM-41 catalyst in hydrogen at 500 °C for 30 min followed by reaction with pure CO at 800 °C and 6 atm for 1 h (conditions previously optimized for 1 wt.% Co-MCM-41). The SWNT grown in the Co-MCM-41 catalysts were characterized by TGA, multi-excitation energy Raman spectroscopy and TEM. The state of the catalyst and the size of the metallic cobalt clusters formed in Co-MCM-41 during the SWNT synthesis were characterized by X-ray absorption spectroscopy. The mechanism controlling the diameter distribution of the SWNT produced is related to the size uniformity of the cobalt clusters nucleated in the Co-MCM-41 catalytic template: the SWNT growth selectivity and size uniformity is influenced by the cobalt concentration in the framework. If the cobalt is not initially strongly stabilized in the MCM-41 framework during template synthesis, the catalyst produces SWNT with a wider diameter distribution. Co-MCM-41 catalysts with up to 3 wt.% cobalt can be used to grow SWNT with a diameter distribution similar to that obtained with 1 wt.% Co-MCM-41, but at yields greater by a factor of approximately 2.4.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.