Abstract

A series of CrO y (17.5 wt%)-CeO 2 ( X wt%)/γ-Al 2 O 3 catalysts ( X = 0, 0.5, 2, 5, 8) with various Ce contents were prepared by a wetness impregnation method and were applied to the dehydrogenation of propane to propylene at 550 °C and 0.1 MPa. The prepared catalysts were characterized by BET, H 2 -TPR, O 2 -TPD, XPS, XRD, SEM-EDS and Raman spectroscopy. Among the prepared catalysts, the 17.5Cr-2Ce/Al catalyst with the largest amount of lattice oxygen exhibited the best catalytic performance for the dehydrogenation of propane to propylene with lattice oxygen. The decreased presence of oxygen defects and reducibility were the factors responsible for the improved dehydrogenation activity of the catalysts. The CeO 2 layer could inhibit the evolution of lattice oxygen (O 2− ) to electrophilic oxygen species (O 2 − ), and the oxygen defects on the catalyst surface were reduced. The inhibited lattice oxygen evolution prevented the deep oxidation of propane or propylene, the average CO x selectivity decreased from 24.41% (17.5Cr/Al) to 5.71% (17.5Cr-2Ce/Al), and the average propylene selectivity increased from 60.15% (17.5Cr/Al) to 85.05% (17.5Cr-2Ce/Al).

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.