Abstract
PurposeAerostatic porous bearings are important for guide rails and spindles. It is well-known that flow restrictors made of porous materials offer major advantages over conventional restrictors in such bearings, including design and manufacturing, load-carrying capacity, stiffness, damping and dynamic stability. Thus, this work numerically investigates the effect of the arc on a new combined annular-thrust aerostatic porous bearing.Design/methodology/approachThe static characteristics of an annular-thrust aerostatic porous bearing were studied using a fast finite element scheme. The pressure distribution, radial load and thrust load were analyzed as functions of the arc, permeability and eccentricity.FindingsThe results reveal that the radial load achieves maximal values at an optimal arc value between 200 and 300, and the thrust load increases monotonically with increasing arc.Originality/valueThis work developed a new combined annular-thrust aerostatic porous bearing to investigate the effect of arc on the annular-thrust aerostatic porous bearings to increase the load-carrying capacity.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.