Abstract

In order to increase industrial production quality and efficiency, it is essential to understand how the aeration and no-aeration condition affects liquid and solid material mixing in the stirred tank. Due to complicated shear flows, the related mass-transfer mechanism confronts numerous difficulties. This paper put forward an improved computational fluid dynamics and discrete element method (CFD–DEM) modeling approach to explore the effect mechanism of aeration conditions on liquid–solid material mixing. Firstly, a mass-transfer dynamic model is set up with a volume of fluid and piecewise linear interface construction (VOF–PLIC) coupling strategy to explore flow modes and vorticity evolution trends under aeration control. Then, a self-developed interphase coupling interface is utilized to modify the coupling force and porosity of the porous media model in the DEM module, and random dispersion properties of the particle phase under non-aeration and aeration are obtained. Results show that the aeration and flow-blocking components transform fluid tangential speeds into axial and radial speeds, which can improve the material mixing quality and efficiency. The mixed flow field can reach a greater turbulent process under the impeller rotation, making the particles have an intensive disorder and complex flow patterns. The enhanced motion efficiency of the vortex clusters encourages their nesting courses and improves cross-scale mixed transport. It can serve as some reference for the three-phase flow mixing mechanism, vorticity distribution law, and particle motion solution and has a general significance for battery homogeneous mixing, biopharmaceutical processes, and chemical process extraction.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call