Abstract
The aim of this work is to study the transesterification of vegetable oil with a high acid number at unchanged reaction conditions. Rapeseed oil was used as the raw material and its acid number was changed by the addition of oleic acid (from 0.89 to 12.25 mg KOH/g). Methanol was used for transesterification (molar ratio of oil to methanol 1:6) and potassium hydroxide was used as a catalyst. After the reaction time, the residue of the catalyst was neutralised by gaseous carbon dioxide and the methanol excess was removed. After the separation of two phases, each of them was analyzed (in the ester phase: yield, content of methyl ester and acid number; in the glycerol phase: yield, density, viscosity, content of glycerol, soaps, methyl ester, potassium carbonate and hydrogen carbonate). The obtained data was compared with theoretical material balances and the effect on the saponification of oil was discussed. The results show that the yield of methyl ester (biodiesel) is significantly affected by a higher acid number, as well as enhanced soap formation. On the other hand, the conversion of the oil and acid number of the ester phase remain at constant values in studied borders.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.