Abstract

PurposeThe aim of this paper is to study and analyse the advantages and limitations of the scanning reference electrode technique (SRET) to detect and assess localised electrochemical activity based on an evaluation of the influence of the principal test parameters on the sensitivity and resolution of the technique.Design/methodology/approachMeasurements of Ohmic potential gradients induced by ionic flux close to a point current source (PCS) were carried out using a scanning reference electrode technique (SRET) instrument, which comprised a vertical rotating working electrode and a scanning probe formed by a pair of platinum electrodes of approximately 200 μm of diameter. Ionic flux was induced by anodic polarisation applied to a gold micro‐disc electrode, which acted as the PCS. Measurements were conducted in electrolytes of ten different conductivities, using different scanning probe tips to sample surface distance and different working electrode rotation rates. The range of conductivities used included most of the possible electrolytes to which metallic materials can be in contact under real service conditions.FindingsThe SRET signal sensed from a polarised PCS showed a strong dependence on the rotation rate of the working electrode for electrolytes of low conductivity but a minimal effect on electrolytes with conductivities higher than 50 mS/cm.Originality/valueThis work presents the effect of wide variations on the electrochemical and operational conditions on the sensitivity and resolution of SRET signal response and discusses the limitations of the technique to assess localised electrochemical activity due to the effect of high conductivity electrolytes, large separation distance between the SRET scanning probe and developing dissolution and scanning rate of a the localised site.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call