Abstract

The variation of fracture toughness with temperature and specimen size of a 3 pct NiCrMoV LP disc steel has been investigated over the temperature range -100 to +100 °C using compact tension and single-edge-notched bend geometries. A number of large ‘half-disc’ three point bend specimens were also tested. Toughness increased up to a transition temperature coinciding with the onset of stable ductile tearing prior to instability. Below this temperature fracture could be described by established linear elastic or post yield fracture analyses. Above this temperature failure was by plastic collapse. The transition temperature decreased with decreasing specimen size, and at similar thicknesses was lower for the bend geometry than for the compact tension so that it was not possible to predict the fracture behavior of the full size service component from small scale tests in the transition region. A further complicating feature was the extreme scatter of some duplicate test results below the transition temperature. The implications for toughness testing in the transition region are discussed. The data obtained in this work have been combined with published data for similar steels to derive an equation which describes the variation of fracture toughness with temperature for steels of this type.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.