Abstract

Magnetic nanoparticles, such as magnetite (Fe3O4), exhibit superparamagnetic properties below 15 nm at room temperature. They are being explored for medical applications, and the coprecipitation technique is preferred for cost-effective production. This study investigates the impact of synthesis temperature on the nanoparticles' physicochemical characteristics. Two types of magnetic analysis were conducted. Samples T 40, T 50, and T 60 displayed superparamagnetic behavior, as evidenced by the magnetization curves. The experiments verified the development of magnetic nanoparticles with an average diameter of approximately dozens of nanometers, as determined by various measurement methods such as XDR, Raman, and TEM. Raman spectroscopy showed the characteristic bands of the magnetite phase at 319, 364, 499, and 680 cm−1. This was confirmed in the second analysis with the ZFC-FC curves, which showed that the samples' blocking temperatures were below ambient temperature. ZFC-FC curves revealed a similar magnetization of about 30 emu/g when applying a magnetic field of 5 kOe.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call