Abstract

The delayed outward current in snail neurones was separated into two components with different temperature sensitivity: (i) a persistent component and (ii) a transient (inactivating) component. The effect of cooling on the value of the transient current is strongly dependent upon the value of the conditioning potential. It was supposed that cooling causes a decrease in the negative surface potential in the vicinity of the potassium pathways and removes their inactivation. Simultaneously cooling depresses the potassium conductance. The effect on surface potential is more distinct with conditioning potentials at which a significant fraction of the transient outward current is inactivated. The effect of cooling on the transient component of the fast outward current was similar to that on the transient component of the delayed outward current.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.