Abstract
Biocompatible hydrogels that serve as the hosting membrane for various bioreceptors contribute to the response of impedimetric biosensors. The temperature response of poly(2-hydroxymethacrylate) [p(HEMA)]-based hydrogel networks prepared with poly(ethylene glycol) methacrylate (PEGMA) for enhanced biocompatibility and with N-[tris(hydroxymethyl)methyl] acrylamide (HMMA) was studied. Hydrogels were cross-linked with tetraethyleneglycol diacrylate (TEGDA) and synthesized by UV initiation (2 M% DMPA photoinitiator). The p(HEMA- co-PEGMA- co-HMMA) based hydrogels were fabricated as discrete gel pads ( D = 2.5 mm, H = 2 mm and V = 9.82 μL) on top of 250 μm diameter cysteamine modified and acryloyl (polyethylene glycol) 110 N-hydroxy succinamide ester (acryloyl-PEG-NHS) derivatized gold microelectrodes set within 8-well (8W1E) cell culture biochips. Gel pads were fabricated with cross-link densities corresponding to 1, 3, 5, 7, 9 and 12 M% TEGDA and were studied by frequency dependent 3-electrode electrochemical impedance spectroscopy (1 mHz to 100 kHz; 50 mV p-t-p) and by temporal 2-electrode impedimetry (64 kHz; 50 mV p-t-p) over the temperature range 30–45 °C at 90% RH or in aqueous 0.1 M Tris/KCl at pH 7.2 buffer. The p(HEMA- co-PEGMA- co-HMMA) hydrogels showed an increase in the real component of impedance with increasing cross-link density and demonstrated activation energies for impedimetric transport that ranged from 15 kJ/mol (3 M%) to 20 kJ/mol (12 M%) confirming the dominance of proton migration in the impedance of the hydrogels.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.