Abstract
Specific dynamic action (SDA), the increase in metabolic expenditure associated with consumption of a meal, represents a substantial portion of fish energy budgets and is highly influenced by ambient temperature. The effect of temperature on SDA has not been studied in yellowfin tuna (Thunnus albacares, Bonnaterre 1788), an active pelagic predator that occupies temperate and subtropical waters. The energetic cost and duration of SDA were calculated by comparing routine and post-prandial oxygen consumption rates. Mean routine metabolic rates in yellowfin tuna increased with temperature, from 136mgO2kg−1h−1 at 20°C to 211mgO2kg−1h at 24°C. The mean duration of SDA decreased from 40.2h at 20°C to 33.1h at 24°C, while mean SDA coefficient, the percentage of energy in a meal that is consumed during digestion, increased from 5.9% at 20°C to 12.7% at 24°C. Digestion in yellowfin tuna is faster at a higher temperature but requires additional oxidative energy. Enhanced characterization of the role of temperature in SDA of yellowfin tuna deepens our understanding of tuna physiology and can help improve management of aquaculture and fisheries.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.