Abstract

Rising sea temperatures may potentially affect the dispersive larval phase of sessile marine invertebrates with consequences for the viability of adult populations. This study demonstrated that the planktonic larvae of Rhopaloeides odorabile, a common Great Barrier Reef sponge, survived and metamorphosed when exposed to temperatures up to 9°C above the annual maximum (~29°C). Planktonic larval duration of 54 h, at ambient temperatures (~28°C), were reduced to 18 h for larvae exposed to elevated temperatures (32–36°C). Moreover, at ambient temperatures larvae began metamorphosing after 12 h, but at 32–36°C this reduced to only 2 h. Larvae survived and could still metamorphose at temperatures as high as 38°C, but were no longer functional at 40°C. These results imply that predicted increases in sea surface temperature may reduce planktonic larval duration and dispersal capabilities, thereby contributing to population subdivision of the species.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.