Abstract

Leaf and whole plant gas exchange (net photosynthesis Pn, dark respiration Dr, transpiration Tr, and resistance R) of `Jacqueline' Alstroemeria, grown in pots inside a greenhouse, were measured under lab conditions using an openflow and a semi-closed system respectively. Temperature responses of apical fully expanded leaves, on flowering and non-flowering shoots, showed an optimum range for net photosynthesis (Pn) from 15 to 20 °C. Above 25 °C Pn dropped considerably as temperature increased. Leaf transpiration rates over the same range of temperature showed a similar decrease, indicating that low leaf Pn rates at higher temperatures were due in part to increased stomatal resistance. Whole plant photosynthetic response to temperature was similar to that of leaf gas exchange. The optimum temperature range for whole plant Pn was from 12 to 17 °C. These results show that moderately low temperatures are essential for carbon assimilation and efficient water use in Alstroemeria. Temperature interactions with other environmental factors will also be presented in models describing Pn rates as a function of irradiance, CO2 concentration, and temperature.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call