Abstract

Seasonal temperature-fluctuation has been regarded as a key environmental factor affecting rural biogas fermentation yields. The present study investigated the impact of seasonal temperature-fluctuation on operating-temperatures and biogas production in rural household digesters at Qinghai Plateau and revealed the related changes in microbial diversity and community structure by 16S rRNA gene high-throughput sequencing (HTS) analysis. Our results showed closely positive correlation between operating-temperatures and biogas production. HTS analysis indicated the highest diversity for bacteria community in autumn (at highest operating-temperatures) and late winter (at lowest operating-temperatures) and for archaea community only in autumn. HTS analysis classified bacteria into 21 phyla and 346 genera with the most predominant phyla Firmicutes, Bacteroidetes and Proteobacteria (> 72.4% in total) and the most predominant genera Proteiniphilum, Clostridium sensustricto 1, Petrimonas, Pseudomonas and Fastidiosipila (37.09-38.61% in total). HTS analysis also revealed two main archaea orders (Methanomicrobiales and Methanobacteriales) and one predominant genus Methanogenium to support plateau biogas fermentation. Especially, a remarkable impact of temperature on the community abundances of bacteria phyla Synergistetes and archaea genera Methanogenium and Thermogymnomonas was observed, and such microbial community structure changes were positively consistent with the biogas production. The present work provided the first set of evidences to link temperature-controlled modulation of microbial community structure with rural household biogas production at Qinghai Plateau.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call