Abstract

Temperature cycling tests in various temperature ranges were carried out to investigate the magnetic degradation of the Zn-coated NdFeB magnet. The losses of the surface magnetic field and magnetic flux were well fitted by using an index model. Compared with the lower limit temperature, the upper limit temperature had more obvious effect on the magnetic degradation. Once the upper limit temperature exceeded ≥160 °C, the magnetic degradation mainly occurred during the first cycle, which was different from the gradual decline with an increase in cycle number at a temperature of ≤140 °C. Moreover, the temperature cycling with a maximum upper limit temperature of 180 °C led to a loss of the remanence intensity, while the coercivity remained stable. Microstructure and element distribution analysis revealed that the oxidation of the Zn coating layer during the temperature cycling causes its cracking and an insertion of the oxygen element into the NdFeB substrate. The Nd-, Pr-rich phase at grain boundaries provided diffusion channels for oxygen elements, leading to a surface oxidation of NdFeB grains.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call