Abstract

Shallow coastal and estuarine habitats function as nurseries for many juvenile fish. In this comparative study, metabolic profiles of two New Zealand finfish, snapper (Chrysophrys auratus) and yellow-eyed mullet-YEM (Aldrichetta forsteri) that as juveniles share the same temperate coastal environments, were examined. Metabolic parameters (routine and maximum metabolic rates, and specific dynamic action-SDA) were investigated at a set of temperatures (13, 17, 21°C) within the range juveniles both species experience annually. SDA was also determined for a range of different feed rations to investigate the effects of meal size on postprandial metabolic response. Temperature was a strong modulator of snapper and YEM metabolic profile (routine and maximum metabolic rates, and absolute and factorial aerobic scope). Metabolic rates increased with temperature in both species as did absolute scope in YEM, though for snapper, it was only greater at the highest temperature. Factorial scope behaved in the same fashion for the two species, being greatest at 13°C. Both absolute and factorial scope were ~ twofold greater in YEM than in snapper across the entire temperature range. Temperature also affected SDA response in snapper, while in YEM, SDA parameters were largely unaffected when temperature increased from 17 to 21°C. Snapper were able to consume a large range of meal sizes (0.5-3.0% body mass-BM) with meal sizes > 1% BM having a pronounced effect on numerous SDA parameters, whereas mullet appeared to consume more limited ration sizes (≤ 1.0% BM). In both species, rations ≤ 1% BM produced similar changes in SDA parameters identifying comparable digestive bio-energetics. Overall, our metabolic characterisations demonstrate that both species can adjust to the variable temperate environmental temperatures and manage the energetic costs of digestion and feed assimilation. Yet, despite these general similarities, YEM's greater aerobic scope may point to better physiological adaptation to the highly variable temperate coastal environment than were observed in snapper.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call