Abstract
The ideal temperature and hematocrit level of blood cardioplegia has not been clearly established. This study was undertaken (a) to determine the optimal temperature of blood cardioplegia and (b) to study the effect of hematocrit levels in blood cardioplegia. A comparison of myocardial preservation was done among seven groups of animals on the basis of variations in hematocrit levels and temperature of oxygenated cardioplegic solution. The experimental protocol consisted of a 2-hour hypothermic cardioplegic arrest followed by 1 hour of normothermic reperfusion. Group 1 received oxygenated crystalloid cardioplegic solution at 10 degrees C. Groups 2 through 7 received oxygenated blood cardioplegic solution with the following hematocrit values and temperatures: (2) 10%, 10 degrees C; (3) 10%, 20 degrees C; (4) 10%, 30 degrees C; (5) 20%, 10 degrees C; (6) 20%, 20 degrees C; and (7) 20%, 30 degrees C. Parameters studied include coronary blood flow, myocardial oxygen extraction, myocardial oxygen consumption, and myocardial high-energy phosphate levels of adenosine triphosphate and creatine phosphate during control (prearrest), arrest, and reperfusion. Myocardial oxygen consumption at 30 degrees C during arrest was significantly higher than at 10 degrees C and 20 degrees C, which indicates continued aerobic metabolic activity at higher temperature. Myocardial oxygen consumption and the levels of adenosine triphosphate and creatine phosphate during reperfusion were similar in all seven groups. Myocardial oxygen extraction (a measure of metabolic function after ischemia) during initial reperfusion was significantly lower in the 30 degrees C blood group than in the 10 degrees C blood group at either hematocrit level and in the oxygenated crystalloid group, which suggests inferior preservation. The hematocrit level of blood cardioplegia did not affect adenosine triphosphate or myocardial oxygen consumption or extraction. It appears from this study that blood cardioplegia at 10 degrees C and oxygenated crystalloid cardioplegia at 10 degrees C are equally effective. Elevating blood cardioplegia temperature to 30 degrees C, however, reduces the ability of the solution to preserve metabolic function regardless of hematocrit level. Therefore, the level of hypothermia is important in blood cardioplegia, whereas hematocrit level has no detectable impact, and cold oxygenated crystalloid cardioplegia is as effective as hypothermic blood cardioplegia.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: The Journal of Thoracic and Cardiovascular Surgery
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.