Abstract
The annual incidence of malignant melanoma is estimated at 10-12 per 100000 inhabitants in countries of Central Europe and the US, with more recent estimates showing a dramatic upward trend. Taurolidine (Carter/Wallace, Cranberry, NJ) is a novel, potentially effective, antitumor chemotherapeutic agent. We hypothesized that Taurolidine could inhibit the growth, induce apoptosis, affect the cell cycle and change morphology of melanoma cells. We expected this process to be different in adherent and floating subpopulations that may be reflective of solid tumors and their metastases. Analysis of MNT-1 human and B16F10 murine melanoma cells showed that at 72 h the IC(50) of Taurolidine was 25.4+/-3.3 microM for MNT-1 human melanoma cells and 30.9+/-3.6 microM for B16F10 murine melanoma cells. Taurolidine induced DNA fragmentation of melanoma cells in a dose-dependent manner. Taurolidine (75 and 100 microM) induced 52-97% Annexin-V binding (apoptosis), respectively. Evaluation of cell cycle after 72 h exposure to Taurolidine (0-100 microM) revealed that the percentage of melanoma cells in S phase increased from 27 to 40% in the adherent subpopulation and from 33 to 49% in the floating subpopulation. Phase contrast microscopy revealed a marked swelling of melanoma cells and decreasing cell numbers in adherent subpopulation starting at 24 h with 25 microM Taurolidine. Shrinkage of cells dominated at 75-100 microM Taurolidine. Using Cytospin assay in the floating population, we observed swelling of melanoma cells induced by 25-100 micro Taurolidine and appearance of giant (multinuclear) forms resulting from exposure to 75-100 micro Taurolidine. Some floating cells with normal morphology were observed with low concentrations of Taurolidine (0-25 microM). These data show that effects of Taurolidine may be different in adherent and floating subpopulations of melanoma cells. More importantly, floating subpopulations that may contain some viable melanoma cells, may be reflective of potential metastasis after treatment of solid tumors in vivo.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.