Abstract

Efficient sequestration of arsenic from drinking water is a global need. Herein we report eco-friendly porous hybrid adsorbent beads for removal of arsenic, through in situ synthesis of MIL-100(Fe) in the chitosan solvogel. To understand the structural vs. performance correlation, series of hybrid adsorbents were synthesized by modulating synthesis conditions like temperature, crystallization time, and concentration. Adsorbents were investigated using PXRD, FT-IR, SEM, and ICP-OES. Intriguing correlation between crystallinity and adsorption performance was observed as low and high crystalline MIL-100(Fe)-chitosan (ChitFe5 and ChitFe7, respectively) exhibited exceptional adsorption towards As5+ by removing it from water with 99% efficiency, whereas for As3+ species removal of about 85% was afforded. Adsorption isotherms indicated that increase in crystallinity (ChitFe5 -> ChitFe7), adsorption capacities of As5+ and As3+ increased from 23.2 to 64.5, and from 28.1 to 35.3 mg/g, respectively. Selectivity tests of the adsorbents towards As5+ and As3+ over competitive anions in the equimolar competitive systems having nitrates, sulfates, and carbonates demonstrated that the performance of the absorbents was fully maintained, relative to the control system. Through this study a highly selective and efficient adsorbent for arsenic species is designed and a clear insight into the structural tuning and its effect on adsorption performance is provided.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.