Abstract

AbstractIn the present study, a synbiotic coating of flaxseed mucilage, defatted rice bran carbohydrate, and Bifidobacterium animalis subsp. Lactis BB12 was fabricated for coating dried mango slices (M‐P‐C). The control samples contained only probiotic bacteria without coating (M‐P). Several quality parameters (moisture, weight loss, shrinkage percentage, pH, firmness, and color) were assessed on specific storage circumstances (25°C, relative humidity (RH) = 22%.). In addition, the survival of Bifidobacterium animalis subsp. Lactis BB12 was evaluated on storage and under simulated gastrointestinal (GI) conditions. According to the results, the log number of Bifidobacterium animalis subsp. Lactis BB12 reached 8.1 and 6.2 for coated and uncoated samples, respectively, during the 45 days storage at 25°C (>6 log CFU (log colony‐forming units)/g) and at finished stage of in vitro gastrointestinal circumstances, the log number of probiotic bacterial count reached 6.8 and 4 for coated and uncoated samples, respectively. The coating resulted in significantly less weight loss, moisture loss, and shrinkage of the mango slices than uncoated ones (p < .05). The growth of yeasts and molds was undetectable in both samples. The results of acceptance experiments for M‐P and M‐P‐C dried mango samples showedthat there were no significant differences between M‐P and M‐P‐C samples (p >.05), indeed in the case of purchase intention and overall acceptability. After reading the text highlighting, there was no significant difference in all attributes of M‐P‐C samples pre and post of reading text highlighting. It could be concluded that the synbiotic coating of mango slices improved the quality characteristics of the dried mango as well as viability of the probiotic bacteria at storage time and under simulated gastrointestinal conditions.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call