Abstract
Purpose To prevent the coil from burning or getting damaged, it is necessary to estimate the duration of its operation as long as its temperature does not exceed the permissible limit. This paper aims to investigate the effect of switching on the thermal behavior of impregnated and nonimpregnated windings. Also, the safe operating time for each winding is determined. Design/methodology/approach The power loss of the winding is expressed as a function of the winding specifications. Using homogenization techniques, the equivalent thermal properties for the homogenized winding are calculated and used in a proposed thermal equivalent circuit for winding modeling and analysis. The validity and accuracy of the proposed model are determined by comparing its analysis results and simulation and measurement results. Findings The results show that copper windings have better thermal behavior and lower temperature compared to aluminum windings. On the other hand, by impregnating or increasing the packing factor of the winding, the thermal behavior is improved. Also, by choosing the right duty cycle for the winding current source, it is possible to prevent the burning or damage of the winding and increase its lifespan. Comparing the measurement results with the analysis results shows that the proposed equivalent circuit has an error of less than 4% in the calculation of the winding center temperature. Research limitations/implications In this paper, the effect of temperature on the electrical resistance of the coil is ignored. Also, rectangular wires were not investigated. Research in these topics are considered as future work. Originality/value By calculating the thermal time constant of the winding, its safe operation time can be calculated so that its temperature does not exceed the tolerable value (150 °C). The proposed method analyzes both impregnated and nonimpregnated windings with various schemes. It investigates the effects of switching on their thermal behavior. Additionally, it determines the safe operating time for each type of winding.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.