Abstract

PurposeStudies have shown the effects of surgical treatments for trapeziometacarpal osteoarthritis on thumb biomechanics; however, the biomechanical effects on the wrist have not been reported. This study aimed to quantify alterations in wrist muscle forces following trapeziectomy with or without ligament reconstruction and replacement.MethodsA validated physiological wrist simulator replicated cyclic wrist motions in cadaveric specimens by applying tensile loads to 6 muscles. Muscle forces required to move the intact wrist were compared with those required after performing trapeziectomy, suture suspension arthroplasty, prosthetic replacement, and ligament reconstruction with tendon interposition (LRTI).ResultsTrapeziectomy required higher abductor pollicis longus forces in flexion and higher flexor carpi radialis forces coupled with lower extensor carpi ulnaris forces in radial deviation. Of the 3 surgical reconstructions tested post-trapeziectomy, wrist muscle forces following LRTI were closest to those observed in the intact case throughout the range of all simulated motions.ConclusionsThis study shows that wrist biomechanics were significantly altered following trapeziectomy, and of the reconstructions tested, LRTI most closely resembled the intact biomechanics in this cadaveric model.Clinical relevanceTrapeziectomy, as a standalone procedure in the treatment of trapeziometacarpal osteoarthritis, may result in the formation of a potentially unfilled trapezial gap, leading to higher wrist muscle forces. This biomechanical alteration could be associated with clinically important outcomes, such as pain and/or joint instability.

Highlights

  • From the *Department of Bioengineering, Imperial College London; and the †Department of Hand Surgery, Chelsea and Westminster Hospital, London, United Kingdom

  • The 6 wrist muscles considered for this study—flexor carpi radialis (FCR), flexor carpi ulnaris (FCU), extensor carpi radialis longus (ECRL), extensor carpi radialis brevis (ECRB), extensor carpi ulnaris (ECU), and abductor pollicis longus (APL)—were identified and dissected at their distal myotendinous junction

  • While simulating FE-5030 after performing trapeziectomy (Fig. 2), the APL force was higher by 112% at 50 flexion (P < .01) compared with that from the intact specimens

Read more

Summary

Objectives

This study aimed to quantify alterations in wrist muscle forces following trapeziectomy with or without ligament reconstruction and replacement. The primary objective of this study was to simulate dynamic wrist motions on a physiological simulator using active loads to compare a range of surgical techniques and to quantify the effect of surgical reconstructions commonly used to treat trapeziometacarpal osteoarthritis on wrist biomechanics by comparing wrist muscle forces for each condition

Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.