Abstract

We study the shape of the interface in a partially filled horizontal cylinder which is rotating about its axis. Two-dimensional steady solutions for the interface height are examined under the assumptions that the filling fraction is small, inertia may be neglected, and the fluid forms a continuous film covering the surface. Three different regimes of steady solutions have been reported in the literature, corresponding to limits in which the ratio of gravitational to viscous forces (as defined in the text) is small, moderate or large. In each case, solutions have only been described analytically in the limit that surface tension effects are negligible everywhere. We use analytical and numerical methods, include surface tension and study steady solutions in a regime when the ratio of gravitational to viscous forces is large. This solution comprises a fluid pool that sits near the bottom of the cylinder and a film that coats the sides and top of the cylinder, the thickness of which can be determined by Landau–Levich–Derjaguin type arguments. We also examine the effect of surface tension on the solutions in the limits of the ratio of gravity to viscous forces being moderate and small.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.