Abstract

The interactions of Ag atom with different types of CuO(111) surface, including the perfect, oxygen-vacancy and precovered oxygen surfaces, have been systematically investigated using density functional theory (DFT) calculations to examine the effect of surface structures on Ag atom adsorption. The calculated results indicate that the Cu1-Cu1 bridge site and the oxygen-vacancy site are the active centres for atomic Ag adsorption on the perfect surface and the oxygen-vacancy surface respectively, while atomic Ag preferentially adsorbs at the Op site on the precovered oxygen surface. The activity of the CuO(111) surface for atomic Ag adsorption can be improved both on the perfect and oxygen-vacancy surfaces, while the activity of the CuO(111) surface for atomic Ag adsorption will be suppressed on precovered oxygen surfaces. Furthermore, the adsorption of NO on different CuO(111) surfaces with Ag adsorption was investigated, and the calculation results show that the adsorption of NO on an Ag-loaded CuO(111) surface is greater than that on the pure CuO(111) surface.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call