Abstract
The effect of surface roughness on efficiency of low pressure turbines (LPT) was investigated experimentally in a multistage turbine high-speed rig. The rig consisted of three stages of a state-of-the-art LPT. The stages were characterized by a very high wall-slope angle, reverse cut-off design, very high lift and very high aspect ratio airfoils. Two sets of airfoils (both stators and rotors) were tested. The first set was made of airfoils with a roughness size of 0.7 μm Ra (25–35×10−5 ks/Cm), which was representative of LPT polished airfoils. The surface finish for the second set of airfoils was 1.8 μm Ra for blades and 2.5 μm Ra for stators (approximately 90×10−5 in terms of ks/Cm for both stators and blades). The resulting roughness of this set was representative of “as-cast” airfoils of low pressure turbines. The airfoil geometries, velocity triangles, leading and trailing edge locations and flowpath were maintained between both sets. They were tested with the same instrumentation and at the same operating conditions with the intention of determining the isolated impact of the surface roughness on the overall efficiency. The turbine characteristics: sensitivity to speed, specific work, Reynolds number and purge flows were obtained for both sets. The comparison of the results suggests that the efficiency and capacity of both types of airfoils exhibit the same behaviour. No significant differences in the results can be distinguished for the range of operating conditions of this study. The results agree with previous studies of distributed roughness in turbines: the use of as-cast rough airfoils in some low pressure turbines at high altitude does not introduce additional pressure losses.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.