Abstract

ABSTRACTThe effects of the surface polarity of a glass substrate on the orientation of nematic liquid crystals (LCs) were studied using the polarised optical microscope and Fourier-transform infrared spectroscopy. On the surface of oxygen plasma treated glass, a homeotropic alignment of LCs was induced for LCs with negative dielectric anisotropy. This suggests that vertical orientation of LCs could be induced on a polar glass substrate without using an LC alignment layer. Upon cooling towards the isotropic–nematic transition, E7 with positive dielectric anisotropy changes its LC arrangement to isotropic, homeotropic, planar orientations in order. The nematic LC anchoring transition of E7 was interpreted by considering the competition between van der Waals forces and dipole interactions that control the alignment of LC molecules on a polar glass surface.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call