Abstract

Developing cost-effective and highly active electrocatalysts for the oxygen evolution reaction (OER) is crucial for advancing sustainable energy applications. High-entropy alloys (HEAs) made from earth-abundant transition metals, thanks to their remarkable stability and electrocatalytic performance, provide a promising alternative to expensive electrocatalysts typically derived from noble metals. While pristine HEA surfaces have been theoretically investigated, and the effect of oxygen coverage on conventional metal electrocatalysts has been examined, the impact of surface oxygen coverage on the electrocatalytic performance of HEAs remains poorly understood. To bridge this gap, we employ density functional theory (DFT) calculations to reconstruct the free energy diagram of OER intermediates on CoFeNiCr HEA surfaces with varying oxygen coverages, evaluating their impact on the rate-limiting step and theoretical overpotential. Our findings reveal that increased oxygen coverage weakens the adsorption of HO* and O*, but not HOO*. As a result, the theoretical overpotential for the OER decreases with higher oxygen coverage, and the rate-limiting step shifts from the third oxidation step (HOO* formation) at low coverage to the first oxidation step (HO* formation) at higher coverage.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.