Abstract

To investigate the gliding ability and mechanical properties of decellularized intrasynovial tendons with and without surface modification designed to reduce gliding resistance. We randomly assigned 33 canine flexor digitorum profundus tendons to 1 of 3 groups: untreated fresh tendons, to serve as a control; tendons decellularized with trypsin and Triton X-100; and tendons decellularized as in group 2 with surface modification using carbodiimide-derivatized hyaluronic acid and gelatin (cd-HA-gelatin). Tendons were subjected to cyclic friction testing for 1,000 cycles with subsequent tensile stiffness testing. We qualitatively evaluated the surface roughness after 1,000 cycles using scanning electron microscopy. The gliding resistance of the decellularized group was significantly higher than that of both the control and cd-HA-gelatin tendons (0.20, 0.09, and 0.11 N after the first cycle; and 0.41, 0.09, and 0.14 N after 1,000 cycles, respectively). Gliding resistance between the control and cd-HA-gelatin groups was not significantly different. The Young modulus was not significantly different between groups. The surfaces of the control and cd-HA-gelatin-treated tendons appeared smooth after 1,000 cycles, whereas those of the decellularized tendons appeared roughened under scanning electron microscopy observation. Decellularization with trypsin and Triton X-100 did not change tendon stiffness. However, although this treatment was effective in removing cells, it adversely altered the tendon surface in both appearance and gliding resistance. Surface modification with cd-HA-gelatin improved the tendon surface smoothness and significantly decreased the gliding resistance. The combination of decellularization and surface modification may improve the function of tendon allografts when used clinically.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.