Abstract
AbstractThe long‐term influence of sward height from April to July (Phase 1) and from July to early October (Phase 2) on total herbage and white clover production was measured over four years (1988–1991) as herbage accumulation. A subsidiary experiment to determine the influence of leaf area index (LAI) on gross canopy photosynthesis was conducted to aid interpretation of growth from herbage accumulation data. Target sward heights in 0·5 ha plots in two blocks were 5,7 or 9 cm in Phase 1 and 7 or 9 cm in Phase 2, although mean actual heights per phase were slightly higher. Net herbage accumulation (NHA) was measured within mobile exclosure areas over successive two‐week intervals. Gross photosynthesis was measured in circular turves removed from the trial area representing a range of LAIs with an at least reasonable clover content. Despite wide differences in mean sward height and herbage mass, NHA and net clover accumulation for a given phase were not generally affected by treatments. Positive effects of grazing at 5 cm in Phase 1 on NHA and clover accumulation later in the year, and of grazing at 7 cm in Phase 2 on NHA in the following spring were sometimes apparent. Gross canopy photosynthesis (g CO2 m−2 h−1) at 1500 μE m−2 s−1 and 18–21°C was linearly related to LAI described by 1·003 + 1·165 LAI over the LAI range 0·7 to 4·5. Total herbage and clover growth, interpreted from NHA by a previously described model, was predicted to be marginally lower in shorter swards. Similarity in NHA and clover accumulation between treatments was considered to be because of lower senescene and decomposition, and a higher proportion of new tissue being assigned to lamina growth, despite lower LAI and gross photosynthesis in the shorter swards. It was concluded that stocking intensity in swards continuously stocked with cattle did not have a strong influence on net total herbage and clover growth.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.