Abstract

A model is proposed for describing the self-organization of localized charges and quantum scattering in undoped GaAs/AlGaAs structures in which a two-dimensional gas of electrons or holes is created by the corresponding gate voltage. We assume that in such a metal-dielectric-undoped semiconductor structure carrier scattering on surface charges localized at the interface between GaAs and the dielectric dominates. Proposed model considers these charges and the corresponding image charges in the metal gate as a closed system in a thermostat. The electrostatic self-organization for this system in thermodynamic equilibrium is studied numerically using the Metropolis algorithm in a wide temperature range. It is shown that, at T > 100 K, a simple formula derived from the theory of two-dimensional one-component plasma gives almost the same behavior of the structural factor at low wave numbers as the Monte Carlo calculation. The scattering times of gate-induced carriers are described by formulas in which the structural factor characterizes the frozen disorder in the given system. In these formulas, the behavior of the structural factor at small wave numbers is decisive. A calculation using these formulas with disorder corresponding to infinite T gives two to three times shorter scattering times than in the corresponding experiments. We found that the theory is consistent with experiment at a freezing point of disorder T ≈ 1000 K for a sample with a two-dimensional electron gas and T ≈ 700 K for a sample with a two-dimensional hole gas. The found values are an upper estimate of the freezing temperature in the studied structures, since the model ignores sources of disorder other than temperature.

Highlights

  • A model is proposed for describing the self-organization of localized charges and quantum scattering in undoped GaAs/AlGaAs structures in which a two-dimensional gas of electrons or holes is created by the corresponding gate voltage

  • We assume that in such a metal-dielectric-undoped semiconductor structure carrier scattering on surface charges localized at the interface between GaAs and the dielectric dominates

  • At T > 100 K, a simple formula derived from the theory of two-dimensional one-component plasma gives almost the same behavior of the structural factor at low wave numbers as the Monte Carlo calculation

Read more

Summary

PHYSICAL CHARACTERISTICS AND THEIR STUDY

Предложена простая модель для описания самоорганизации локализованных зарядов и квантового рассеяния в нелегированных структурах GaAs/AlGaAs, в которых двумерный газ электронов, или дырок создается соответствующим напряжением на затворе. Что при T > 100 К простая формула, выведенная из теории двумерной однокомпонентной плазмы, дает почти такое же поведение структурного фактора при малых волновых числах, как алгоритм Метрополиса. Времена рассеяния затворно-индуцированных носителей описываются формулами, в которых структурный фактор характеризует замороженный беспорядок в данной системе. Что теория согласуется с экспериментом при температуре замерзания беспорядка T ≈ 1000 К в случае образца с двумерным электронным газом и T ≈ 700 К для образца с двумерным дырочным газом. Цель работы — краткое описание предложенной авторами [14] простой модели влияния электростатической самоорганизации поверхностных зарядов на затворно-индуцированный двумерный газ (ДГ) электронов, или дырок

Объект исследования и предлагаемая модель
Φm χs
Основные определения и конечные формулы модели
Integrand of Iq
Расчеты алгоритмом Метрополиса
Итерации продолжаются и после выхода на
Результат сравнения расчетов с экспериментом
Библиографический список
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.