Abstract

Catalytic behaviour of supported nanometal catalysts for alcohols selective oxidation depends on the nature of the support and its surface. To identify the main feature that could explain these effects, supported mono- (Au) and bimetallic (AuAg) catalysts were prepared by using pure MgO, ZnO and Nb2O5, representative of three different types of oxides (basic, amphoteric and acidic, respectively), to get homogeneous metal-support interaction for each catalyst. The catalysts were characterized by XRD, N2 physisorption, TEM, UV–vis, XPS and 2-propanol decomposition as test reaction. It was found that the catalytic activity is influenced by the electron mobility between the gold nanoparticles and the support, which in turns depends on the intermediate electronegativity of the support. Selectivity in n-octanol oxidation was determined by redox properties of the gold species, the acid-base properties of the supports and the catalyst pretreatment. Silver addition modified the acid-base properties of the catalytic system, thus influencing the selectivity in n-octanol oxidation. Pretreatment of the catalyst (drying in air or thermal treatment in hydrogen flow) had a significant impact on its activity and selectivity.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call