Abstract

Rates of incorporation of [4,5-(3)H]leucine into insulin plus proinsulin, designated ;(pro)insulin', and total protein in rat pancreatic islets were measured. Glucose stimulates rates of total protein and (pro)insulin biosynthesis, but (pro)insulin biosynthesis is stimulated preferentially. Mannose and N-acetylglucosamine also stimulate (pro)insulin and total protein biosynthesis; inosine and dihydroxyacetone stimulate (pro)insulin biosynthesis specifically. Fructose does not stimulate (pro)insulin biosynthesis when tested alone, but does so in the presence of low concentrations of glucose, mannose or N-acetylglucosamine. Many glucose analogues do not stimulate (pro)insulin biosynthesis. Mannoheptulose inhibits synthesis of (pro)insulin and total protein stimulated by glucose or mannose but not by dihydroxyacetone, inosine or N-acetylglucosamine; phloretin (9mum) inhibits N-acetylglucosamine-stimulated (pro)insulin biosynthesis preferentially. The data are in agreement with the view that the same glucose-sensor mechanism may control both insulin release and biosynthesis, and ;substrate-site' model is suggested. The threshold for stimulation of biosynthesis of (pro)insulin and total protein is lower than that found for glucose-stimulated insulin release; moreover the biosynthetic response to an elevation of glucose concentration is slower than that found for insulin release. The physiological implication of these findings is discussed. Caffeine and isobutylmethylxanthine, at concentrations known to increase islet 3':5'-cyclic AMP and potentiate glucose-induced insulin release, were without effect on rates of glucose-stimulated (pro)insulin biosynthesis.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call