Abstract
SUMMARYThe effects of dietary sucrose on the metabolic rate of plasma glucose and ruminal propionate as well as the change in nitrogen kinetics were examined in four mature wethers fitted with rumen fistulas in Tsukuba, Japan in 1990. Wethers were fed at 12 equal intervals daily on crushed lucerne hay cubes (1233 g DM/day), with or without 204 g/day of sucrose. Plasma urea and glucose kinetics were determined following a single intravenous injection of [I5N]urea and [U-13C]glucose respectively; and the kinetics of ruminal ammonia and propionate were determined following a single intraruminal injection of [15N]ammonium chloride and [2–13c]sodium propionate respectively. Following supplementation of sucrose to the diet, nitrogen retention was increased (P< 0·05) with a decrease in plasma urea concentration (P< 0·05) and urinary urea excretion (P< 0·05). Sucrose supplementation decreased (P< 005) the concentration and irreversible loss rate of ruminal ammonia. Urinary allantoin excretion did not change with sucrose treatment, but the flow rate of non-ammonia-nitrogen from the rumen was increasedP< 0·05). The transfer rate of ruminal ammonia to plasma urea was also decreased (P< 0·01), whilst the transfer rate of plasma urea to ruminal ammonia was increased (P< 0·05) by dietary sucrose. Sucrose supplementation resulted in a higher concentration of propionate and butyrate (P< 0·05) in the rumen with no significant change in acetate or pH. The concentration of plasma glucose did not change with sucrose treatment, but the concentration of insulin, pool size (P< 0·05) and the irreversible loss rate of glucose (P< 0·01) were increased, reflecting the increase in the production rate of ruminal propionate (P< 0·05). It was concluded that the supplementation of sucrose affected the metabolism of urea and glucose in plasma via a change in ruminal production rate of ammonia and propionate, respectively.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.