Abstract

Zinc tin oxide (ZTO) thin films were deposited on glass substrates by atomic layer deposition (ALD), and the film properties were investigated for varying deposition temperatures in the range of 90 to 180°C. It was found that the [Sn]/([Sn]+[Zn]) composition is only slightly temperature dependent, while properties such as growth rate, film density, material structure and band gap are more strongly affected. The growth rate dependence on deposition temperature varies with the relative number of zinc or tin containing precursor pulses and it correlates with the growth rate behavior of pure ZnO and SnOx ALD. In contrast to the pure ZnO phase, the density of the mixed ZTO films is found to depend on the deposition temperature and it increases linearly with about 1g/cm3 in total over the investigated range. Characterization by transmission electron microscopy suggests that zinc rich ZTO films contain small (~10nm) ZnO or ZnO(Sn) crystallites embedded in an amorphous matrix, and that these crystallites increase in size with increasing zinc content and deposition temperature. These crystallites are small enough for quantum confinement effects to reduce the optical band gap of the ZTO films as they grow in size with increasing deposition temperature.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.