Abstract

Reactively rf-sputtered Bi2O3-ZnO-Nb2O5 (BZN) thin films were prepared on Pt(111)/TiO2/SiO2/Si with substrate heating. The effects of substrate heating on the structures, morphologies, dielectric properties, and voltage-tunable dielectric properties of the films were investigated. With heating, the BZN thin films could be deposited in crystalline form as the cubic pyrochlore phase. The amounts of secondary phases, such as zinc niobate and bismuth niobate, depended on the substrate temperature. The more compounding of the BZN crystalline phase proceeded at deposition, the less formation of secondary phases and stoichiometric change occurred after post-annealing. Therefore, improvement of the dielectric constant and tunability of thin films by grain-size enlargement might be possible with proper substrate heating and post-annealing. The BZN thin films sputtered with a substrate temperature of 550 °C and annealed at 800 °C showed a maximum tunability of 26.5% at a dc bias field of 1000 kV/cm and measurement frequency of 1 MHz.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.