Abstract

Submergence and treatment with ethylene or gibberellic acid (GA3) stimulates rapid growth in internodes of deepwater rice (Oryza sativa L. cv. "Habiganj Aman II"). This growth is based on greatly enhanced rate of cell-division activity in the intercalary meristem (IM) and on increased cell elongation. We chose polyamine biosynthesis as a biochemical marker for cell-division activity in the IM of rice stems. Upon submergence of the plant, the activity of S-adenosylmethionine decarboxylase (SAMDC; EC 4.1.1.50) in the IM increased six- to tenfold within 8 h; thereafter, SAMDC activity declined. Arginine decarboxylase (ADC; EC 4.1.1.19) showed a similar but less pronounced increase in activity. The activity of ornithine decarboxylase (ODC; EC 4.1.1.17) in the IM was not affected by submergence. The levels of putrescine and spermidine also rose in the IM of submerged, whole plants while the concentration of spermine remained low. The increase in SAMDC activity was localized in the IM while the activity of ADC rose both in the node and the IM above it. The node also contained low levels of ODC activity which increased slightly following submergence. Increased activities of polyamine-synthesizing enzymes in the nodal region of submerged plants probably resulted from the promotion of adventitious root formation in the node. Treatment of excised rice-stem sections with ethylene or GA3 enhanced the activities of SAMDC and ADC in the IM and inhibited the decline in the levels of putrescine and spermidine. We conclude that SAMDC and perhaps also ADC may serve as biochemical markers for the enhancement of cell-division activity in the IM of deepwater rice.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call