Abstract

The jugular venous pulse (JVP) is a one of the crucial parameters of efficient cardiovascular function. Nowadays, limited data are available regarding the response of JVP to exercise because of its complex and/or invasive assessment procedure. The aim of the present work is to test the feasibility of a non-invasive JVP plethysmography system to monitor different submaximal exercise condition. Twenty (20) healthy subjects (13M/7F mean age 25 ± 3, BMI 21 ± 2) underwent cervical strain-gauge plethysmography, acquired synchronously with the electrocardiogram, while they were carrying out different activities: stand supine, upright, and during the execution of aerobic exercise (2 km walking test) and leg-press machine exercise (submaximal 6 RM test). Peaks a and x of the JVP waveform were investigated since they reflect the volume of cardiac filling. To this aim, the Δax parameter was introduced, representing the amplitude differences between a and x peaks. Significant differences in the values of a, x, and ax were found between static and exercise conditions (p < 0.0001, p < 0.0001, p < 0.0001), respectively. Particularly, the ax value for the leg press was approximately three times higher than the supine, and during walking was even nine times higher. The exercise monitoring by means of the novel JVP plethysmography system is feasible during submaximal exercise, and it provides additional parameters on cardiac filling and cerebral venous drainage to the widely used heartbeat rate value.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.