Abstract

Miniature, sharped-edge, curved-shape biomechanical elements appear in various biological systems and grant them diverse functional capabilities, such as mechanical defense, venom injection, and frictional support. While these biomechanical elements demonstrate diverse curved shapes that span from slightly curved needle-like elements (e.g., stingers), through moderately curved anchor-like elements (e.g., claws), to highly curved hook-like elements (e.g., fangs)—the curvature effect on the load-bearing capabilities of these biomechanical elements are yet mostly unknown. Here, we employ structural-mechanical modeling to explore the relationships between the curved shapes of biomechanical elements on their local deformation mechanisms, overall elastic stiffness, and reaction forces on a target surface. We found that the curvature of the biomechanical element is a prime modulator of its load-bearing characteristics that substantially affect its functional capabilities. Slightly curved elements are preferable for penetration states with optimal load-bearing capabilities parallel to their tips but possess high directional sensitivity and degraded capabilities for scratching states; contrary, highly curved elements are suitable for combined penetration-scratching states with mild directional sensitivity and optimal load-bearing capabilities in specialized angular orientation to their tips. These structural-mechanical principles are tightly linked to the intrinsic functional roles of biomechanical elements in diverse natural systems, and their synthetic realizations may promote new engineering designs of advanced biomedical injections, functional surfaces, and micromechanical devices.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.